D1040

05215VWE

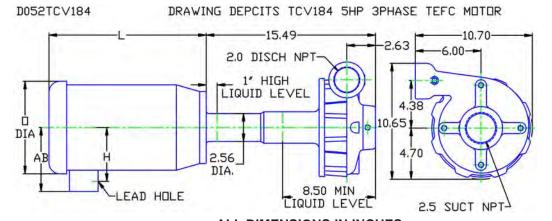
VWE 52

MOTORPUMPTM — 2900 RPM

50 HERTZ, 2.5 X 2 X 6.5 NPT

VWE 52

52 TCV VWF 52


MOTOR DIMENSIONS NEMA TCV FRAME 2900 RPM TEFC

HP	PHASE	FRAME	Ш	AB	0	Н
2.0	3	TCV145	13.15	7.19	5.25	4.18
3.0	3	TCV184	14.41	8.50	5.97	4.44
5.0	3	TCV215	16.16	10.24	7.46	6.23
7.5	3	TCV215	16.16	10.34	7.38	6.23

0522900TCV 81.001.541 M19

ALL DIMENSIONS IN INCHES.

DRAWING REPRESENTS APPROXIMATE PUMP DIMENSIONS. AUTOCAD DRAWING TO SCALE AVAILABLE FROM FACTORY.

TOT	AL HE	AD	PERFO	RMAN	NCE CL	IRVE	200				1.0 5	S.G.	PU	N/ID		2			
MTRS	PSI	FEET	NUMBI	ER 4	0.000.2	242E	290	0 RI	الاا			70°F				∠ .0 x 6.5			
54-	78-	180-									50	Hz	IMP. T MAX. I IMPEL MAX. S	YPE: DIA.: LER NO SPHERE	E 6).: C E: 1	NCLOSE .50 1155 1/32			
48-	69-	160-											PEIct:	EXEN	/IPT			6-20	-72
42-	61-	140-				`							**						
36-	52-	120-	6.50 6.00		50)	60 (65	70	72 —	735		74	7.0	***				
30-	43-	100-	5.63			`.			~~~				7	73	72	70		` ,	
24-	35-	80-	4.88				****	1		*****						×,		<u> </u>	Hp
18-	26-	60-	STD. FOR OE						·	****				$\overline{\overline{\mathbf{x}}}$			5		N
12-	17-	40-	H.P		DIA.						****		1	``,	3 Hp				15 P S
6-	9-	20-	2.0		4.88								2 HP						10 R
			3.0		5.50				NPSF	I REQ									
-	-	-	5.0		6.00														5 E
			7.5		6.50														Т
	GALLC MINUT) 2!	5	5	0	7	5	10	00	12	25	15	50	17	75	20	00	0
CUBI PER F	C METI IOUR	ERS (0 6)	1	1	1	7	2	2	2	8	3,	4	4	0	4	5	

50 Hertz Pump & Motor Data

A 3-phase 50 Hertz Motorpump[™] can be obtained in several ways. The most common options are listed below:

- 1. Most 60 Hz pumps available from Scot Pump can be operated on a 3-phase 50 Hz 190/380V power. However, when operated on 50 Hz power, the speed is reduced by approximately 20%, and a significant reduction in performance is realized. The charts below indicate these reductions in performance.
- 2. Pumps will produce the performance indicated in the performance curves when operated on 50 Hz power. The motors for these selections can be obtained through *derated 60 Hz motors* and *wound 50 Hz motors*.

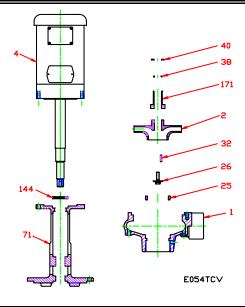
Contact factory for 1 Phase applications.

Derated 60 Hz Motors

The most common practice and readily available method of obtaining a 50 Hz motor is by using the next larger 60 Hz motor and derating it to the desired horsepower on 50 Hz. Many High Efficient motors can be operated on 50 HZ power without a reduction in horsepower. The motor manufacturers 60 HZ nameplate will remain intact. An "Alternate Motor Rating" nameplate indicating the reduced horsepower, RPM, volts, amps, and service factor will be affixed to the pump. In utilizing this practice, service factors may be derated to 1.0. The standard voltage is 190/380V and has a $\pm 10\%$ voltage variation. In addition, 200/400V and 208/416V may be available. Please contact the factory for approval of the rating for your specific application.

Wound 50 Hz Motors

Specially wound 50 Hz 220/380V six-lead Delta Wye motors are available. Most ratings offer a $\pm 15\%$ voltage variation. These motors are not normally a stock item and require an extended lead time.


The impeller and horsepower combination sized (taking the reduction in speed into consideration) may not be suitable for operation on 60 Hz power. The increase in speed, performance and load may overload the system and the electric motors. *Pumps sized for 50 Hz operation SHOULD NOT be tested on 60 Hz*.

60 Hz Pump on 50 Hz Power								
No	No Impeller Change							
50 Hz	50 Hz 60 Hz Factor							
GPM =	GPM = GPM x 0.829							
Head =	Head = Head x 0.687							
BHP = HP x 0.569								

To Size 60 Hz Pump Using 50 Hz Data,									
Obtai	Obtain 60 Hz Data As Follows:								
60 Hz	60 Hz 50 Hz Factor								
GPM =	GPM x	1.2							
Head =	Head x	1.45							
BHP =	HP =	GPM x Head x SG of 3960 x Eff							

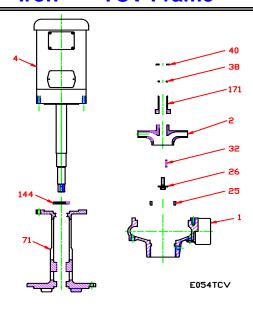
Change of Speed (RPM)					
	How Varies:	Examples			
GPM	Directly	Double RPM = $(2)(RPM) = (2)(GPM)$ Triple RPM = $(3)(RPM) = (3)(GPM)$			
Head	Square	Double RPM = $(2)(RPM) = (2)^2 = (2)(2) = (4)(Head)$ Triple RPM = $(3)(RPM) = (3)^2 = (3)(3) = (9)(Head)$			
BHP Cube Double RPM = $(2)(RPM) = (2)^3 = (2)(2) (2) = (8)(E$ Triple RPM = $(3)(RPM) = (3)^3 = (3)(3)(3) = (27)(E$					
	Chan	ge of Impeller Diameter (Dia.) Examples			
GPM	Directly	Double Dia. = (2)(Dia.) = (2)(GPM) Triple Dia. = (3)(Dia.) = (3)(RPM)			
Head	Square	Double Dia. = $(2)(Dia.) = (2)^2 = (2)(2) = (4)(Head)$ Triple Dia. = $(3)(Dia.) = (3)^2 = (3)(3) = (9)(Head)$			
BHP	Cube	Double Dia. = $(2)(Dia.) = (2)^3 = (2)(2)(2) = (8)(BHP)$			

VWE 52 • Iron • TCV Frame • 2900 RPM

KEY NO.	PART NAME	SPEC SERIES‡					
		3190	3435				
		OLD STYLE	PRESENT STYLE				
1+	CASE, IRON, 2.5 x 2 NPT	130.000	0.219X1				
2	IMPELLER, 7/8" KEYED ENCLOSED, SPECIFY DIAMETER:						
	IRON	137.00	00.120				
4	MOTOR, TCV140	See 60h	HZ Chart				
25	WEAR RING						
	STEEL	103.00	00.154				
26*	IMPELLER RETAINER, STAINLESS	† 118.0	00.163A				
32*	KEY, STAINLESS	† 102.0	000.102				
38*	O-RING, SHAFT, VITON		† 116.000.105				
40*	FLINGER, STAINLESS	-	† 104.000.165A				
71	ADAPTER, IRON	132.000.291	† 132.000.291B				
144*	LIP SEAL, BUNA	† 101.000.244					
171*	THROTTLE BUSHING, STEEL	110.000.348	† 110.000.348C				
	REPAIR KIT	118.000.546	118.000.628				
	RETROFIT KIT		118.000.625				
	CONVERTS OLD STYLE TO PRESENT						
	MOUNTING PLATE MP11: (not shown)	118.000.329					
	MOUNTING PLATE (2 REQ'D)	132.000.292					
	CAP SCREW (2 REQ'D)	105.000.457					
	WASHER (2 REQ'D)	137.000.697					
	NUT (2 REQ'D)	105.000.122					

^{*} DENOTES COMPONENTS INCLUDED IN REPAIR KIT.

E054TCV


F15 P0522900TCV

⁺ INCLUDES STEEL WEAR RING.

[†] DENOTES ITEMS INCLUDED IN RETROFIT KIT.

[‡] SPEC SERIES 3190 WAS MANUFACTURED FROM 1984 THROUGH 01/13/04. SPEC SERIES 3435 IS THE CURRENT CONSTRUCTION AS OF 01/14/04.

VWE 52 • Iron • TCV Frame • 2900 RPM

CONSTRUCTION OPTIONS					
KEY NO.	PART NAME	CAST IRON			
1	Case	Iron			
2	Impeller	Iron			
25	Wear Ring	Steel			
26	Impeller Retainer Assembly	Stainless			
32	Key	Stainless			
38	O-ring, Shaft	Viton			
40	Flinger	Stainless			
71	Adapter	Iron			
144	Lip Seal	BUNA			
171	Throttle Bushing	Steel			
NS	Mounting Plate MP11: (not shown)	Iron			

E054TCV

E15 C0522900TCV